Inorganic polyphosphate supports resistance and survival of stationary-phase Escherichia coli.

نویسندگان

  • N N Rao
  • A Kornberg
چکیده

The Escherichia coli mutant (ppk) lacking the enzyme polyphosphate kinase, which makes long chains of inorganic polyphosphate (poly P), is deficient in functions expressed in the stationary phase of growth. After 2 days of growth in a medium limited in carbon sources, only 7% of the mutants survived compared with nearly 100% of the wild type; the loss in viability of the mutant was even more pronounced in a rich medium. The mutant showed a greater sensitivity to heat, to an oxidant (H2O2), to a redox-cycling agent (menadione), and to an osmotic challenge with 2.5 M NaCl. After a week or so in the stationary phase, mutant survivors were far fewer in number and were replaced by an outgrowth of a small-colony-size variant with a stable genotype and with improved viability and resistance to heat and H2O2; neither polyphosphate kinase nor long-chain poly P was restored. Suppression of the ppk feature of heat sensitivity by extra copies of rpoS, the gene encoding the RNA polymerase sigma factor that regulates some 50 stationary-phase genes, further implicates poly P in promoting survival in the stationary phase.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Phosphate-enhanced stationary-phase fitness of Escherichia coli is related to inorganic polyphosphate level.

We found that Escherichia coli grown in media with >37 mM phosphate maintained a high polyphosphate level in late stationary phase, which could account for changes in gene expression and enzyme activities that enhance stationary-phase fitness.

متن کامل

Polyphosphate Degradation in Stationary Phase Triggers Biofilm Formation via LuxS Quorum Sensing System in Escherichia coli

In most natural environments, association with a surface in a structure known as biofilm is the prevailing microbial life-style of bacteria. Polyphosphate (polyP), an ubiquitous linear polymer of hundreds of orthophosphate residues, has a crucial role in stress responses, stationary-phase survival, and it was associated to bacterial biofilm formation and production of virulence factors. In prev...

متن کامل

Inorganic polyphosphate is essential for long-term survival and virulence factors in Shigella and Salmonella spp.

The importance of inorganic polyphosphate (poly P) and poly P kinase (PPK), the enzyme principally responsible for its synthesis, has been established previously for stationary-phase survival of Escherichia coli and virulence in Pseudomonas aeruginosa. The gene (ppk) that encodes PPK is highly conserved among many bacterial pathogens, including Shigella and Salmonella spp. In view of the phylog...

متن کامل

Inorganic polyphosphate and polyphosphate kinase: their novel biological functions and applications.

In this review, we discuss the following two subjects: 1) the physiological function of polyphosphate (poly(P)) as a regulatory factor for gene expression in Escherichia coli, and 2) novel functions of E. coli polyphosphate kinase (PPK) and their applications. With regard to the first subject, it has been shown that E. coli cells in which yeast exopolyphosphatase (poly(P)ase), PPX1, was overpro...

متن کامل

Studies to select appropriate nonpathogenic surrogate Escherichia coli strains for potential use in place of Escherichia coli O157:H7 and salmonella in pilot plant studiest.

The response of a potential nonpathogenic surrogate organism to a particular treatment should closely mimic the response of the target pathogenic organism. In this study, growth characteristics (generation time, lag phase duration, and maximum population), pH at stationary phase, and survival characteristics (level of attachment and survival on apple surfaces, resistance to hydrogen peroxide de...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of bacteriology

دوره 178 5  شماره 

صفحات  -

تاریخ انتشار 1996